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Given a monotone function g E H 2 [0, 1J and a sequence of meshes ~" such that
limn-> ro I ~"l = 0, we consider the monotone cubic spline interpolating g at the knots
of ~". If we call aM •n this function, we show that

(i) limn~ro n(g"(t) - a~,n(t))2 dt == 0,

(ii) II g(k) - a~~nllro == 0(1 onI J
/

2
-

k
), k = 0,1.

DERIVATION OF THE RESULTS

Let g be a monotone increasing function belonging to H 2 10, 1J =
{f: [0, 1]-.1R:f,f' are absolutely continuous andf"Ee[O, ll}·

Given a sequence of meshes {)n = {O < t7 < t~ < .,. < t~ < I}, let us call
GM,n the cubic monotone spline interpolator of g at the knots of {)n' That is,
the unique solution of the problem

where

.1 .1

j (G~.n(t»2 dt = Min J (U"(t»2 dt,
o UEMn 0

(1)

M n= {u E H 2[0, 1] I u(t7) = g(t7), i = 1,... , n; u'(t) ~ 0, Vt E \0, II}. (2)

For a proof of the existence and uniqueness of GMn , see [2]. We are
interested in the behavior of GM,n as n increases; more precisely, we are
interested in the convergence properties of GM,n to g.

First, we establish the analog of the first integral relation for natural cubic
splines.
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LEMMA 1 (First Integral Relation). For all u E M n' we have

87

.1 ..1.1t [u"(t)-a~.n(tWdt~Jo [U"(t)Pdt-t [a,~.n(t)12dt. (3)

Proof From the definition of aM •n , we conclude that

.1 .1I [a~.n(tW dt ~ I [u"(tW dt
-0 -0

for all u E M n ,

but M" is a closed convex set, hence, using the well-known theorem for the
projection on a convex set (see [3 j), we conclude that

.1

J
o

(u"(t) - a~."(t» a~.n(t) dt ~ O.

By developing the square in the left-hand side of (3), we have

.1I [u"(t)-a~.nJ2dt
'0

(4 )

.1 .1 .1

= J
o

(U"(t»2 dt - 2 t u"(t) a~.n(t) dt +t [a~.n(tW dt. (5)

But (4) is equivalent to

1 I

f u"(t) a~.n(t)dt? f [a~.n(tW dt.
o 0

Introducing this into (5), we get

.1I (u"(t) - a,~.n(t»2 dt
·0

.1 .1 .1

~ I (U"(t»2 dt - 21 (a~.n(t»2 dt + I (a~~.n(t»2 dt.
-0 -0 -0

This concludes the proof. I
Let Sn be the natural cubic spline interpolating g at the knots of On' As is

well known (cf. [1 J), Sn satisfies

.1 .1

f [s~(t)J2 = Min J [u"(tW dt,
-0 UEl n 0

(6)
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where
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(7)

Now we establish a relationship between Sn and aM,n'

THEOREM 1. We have the inequality

.1t (a~,n(t) - S:(t))2 dt

.1 .1

~J [g"(t)-s:(tWdt- j (g"(t)-a,~,n(t))2dt, (9)
o ·0

Proof aM ,n being an element of In' the first integral relation for sn
implies that

.1I (a~,n(t) - S:(t))2 dt
~O

.1 .1

= I (a~,n(t)? dt - J (S:(t))2 dt
'0 0

.1 .1 .1 .1

= J
o
(a~,it))2 dt - J

o
(g"(t))2 dt +J

o
(g"(t))2 dt - J

o
(S;(t))2 dt

= -U: (g"(t)? dt - <(a~,n(t))2 dt J+J: (g"(t))2 dt - <(S;(t))2 dt.

Given that g E M ns: In' we can apply the first integral relations for aM,n
and sn to get the desired result. •

COROLLARY. Let aM,n be the monotone cubic spline interpolating g at the
knots of "n' If g E H 2[0, I] and limn~oo I Jnl = 0, where

then
.1

lim J (a~jt) - g"(t))2 dt = O.
n~CO 0

Proof Using Theorem I, we have

(9)

1 .1 .1

r (a~jt) - S:(t))2 dt <J [g"(t) - s:(tW dt -I (g"(t) - a~.n(tnz dt
.0 0 • 0
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But sn is the cubic spline, then 1<In 1--+ ° implies thatn[g"(t) - s;(tW dt --+ 0, from where we get the desired result. I

As is well known from the theory of spline functions (see [1,5 D, this
result will allow us to obtain estimates for the convergence rates. We do this
in the following

THEOREM 2. Let g E H 2[0, 1] be monotone increasing. Consider a
sequence of meshes <In such that limn.... oo I(lnl = 0, and call (JM,n the monotone
cubic spline interpolating g at (In' Then

k = 0,1. (10)

Proof Given that (JM.n interpolates g at the knots of (In' we have

i = 1. 2,..., n, (II)

Using Rolle's theorem, we deduce the existence of e7 ,...,e~-, such that

we then have,

g' (t) - (J~.n(t) = f Igil (r) - (J~.n(r)1dr,
r;

using now Schwartz inequality we obtain

(12)

But, it is easy to see that

Max le7 ,e~ - e7 ,...,e~_1 - e~_2' 1 - ¢~ _ 1 } <2 I(I n I·

Replacing this inequality into (12) we finally obtain

, .1 1
1
/2

Ig'(t)-a~,n(t)I«2I(1nl)1/2 J
o

(g"(r)-at.n(r»2dr ,

In I0, en Ie~_p 1] we proceed in the same way and finally obtain

Using now the preceding corollary, we get the desired result for k = 1.



90 FLORENCIO I. UTRERAS

From this, we obtain the convergence rate for k = 0, in a standard way,

get) - aM,n(t) = f (g'(t) - a~,n(t)) dt,
t'f

hence

Ig(t) - aM.n(t)! ~ It - t7111 g' - a~,n 1100

~ 1°nlll g' - a~.n!loo'

and the same holds for tE [0, t71, [t~, 1]. This allow us to conclude that

This concludes the proof. I
The preceding results tell us that, even with an additional constraint, the

rate of convergence of cubic splines is preserved. This remarkable property is
not very surprising because it has also been stated for the interpolation of
monotone functions by monotone polynomials (see 14 J).

It is also well known that natural cubic spline interpolants do not
converge at the optimal rate and that the inclusion of boundary conditions
can raise the order of convergence up to o(! On 1

4
). We think that it might be

possible to do the same for monotone splines, but more information on the
nature of aM,n is needed.
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